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Abstract

This paper concerns a super Poisson–Lie structure on the real Lie supergroup SU (m|n). In fact, it turns out that the realification
of the complex Lie supergroup SL(m|n,C) is a double of SU (m|n) i.e. it is endowed with a structure of super Poisson–Lie which
brings down on the supergroup SU (m|n). We show that the dual Poisson–Lie supergroup of SU (m|n) is s(AN ). Reciprocally,
s(AN ) inherits a super Poisson–Lie structure from the realification of SL(m|n,C) such that its dual Poisson–Lie supergroup is
SU (m|n).
c© 2006 Elsevier B.V. All rights reserved.

JGP SC: Symplectic geometry; Lie groups and Lie (super)algebras; Supermanifolds and supergroups

MSC: 17C70; 16W55

Keywords: Standard (graded) real supergroup; Standard (graded) real Baxter–Lie superalgebra; Standard (graded) real Poisson–Lie supergroup;
Standard (graded)∗-structure

1. Introduction

A Poisson–Lie group G is a Lie group equipped with a Poisson bracket compatible with the group multiplication
m : G × G → G. It turns out that the Poisson–Lie groups naturally come in dual pairs (G, G̃) where the Poisson–Lie
bracket on G (G̃) defines the multiplication on G̃ (G). Typically, there may exist several Poisson–Lie structures on a
given Lie group G and, therefore, there are several dual pairs (G, G̃) where G is fixed and G̃ varies. The classification
of all Poisson–Lie structures was successfully performed for the case where G is a simple compact group [6]. It turns
out that (modulo a simple Drinfeld twist of the Cartan subalgebra) there is essentially a unique Poisson–Lie structure
whose corresponding dual group G̃ = AN is given by the Iwasawa decomposition GC = G AN of the complexified
group GC.

The canonical Poisson–Lie structure on the simple compact group G [7] appears in many applications in
mathematics [1,3] and in mathematical physics [5]. The principal motivation of this paper is to construct its
superanalogue, i.e. to consider a simple compact supergroup and to find out a Poisson bracket on it which would
be compatible with the supergroup multiplication. It turns out that this program is less straightforward than it would
seem at first sight. The principal difficulty emerges at the very beginning and it consists in finding the appropriate
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definition of the concept of the simple compact supergroup. Roughly speaking, a supergroup (or, rather, the algebra
of functions on the supergroup) is a graded commutative Hopf superalgebra. It therefore seems that complex (real)
supergroups should be seen as complex (real) superalgebras. In particular, the simple compact supergroup should be
certainly a “real” object and hence it is tempting to identify it to a certain real Hopf superalgebra. Let us now explain,
quite amazingly, that this seemingly natural point of view cannot work. Indeed, having a real graded commutative
Hopf superalgebra, we can define its real Lie superalgebra Lie(G). If Lie(G) is a true Lie superalgebra (i.e. the odd
part is not empty) then the results of Serganova [14] imply: if Lie(G) is simple then either it does not have the odd part
(it is just a Lie algebra) or its even part is not compact. For instance, there is no real simple Lie superalgebra whose
even part would be su(2).

In [11] (first section), we argued that the no-go result of Serganova does not imply that the simple compact Lie
supergroups do not exist but it rather implies that they should not be viewed as real Hopf superalgebras. Speaking
more generally, we found it very natural to define “real” Lie supergroups as complex graded commutative Hopf
superalgebras equipped with a ∗-structure. The situation here is in some sense analogous to that occurring in the
theory of quantum groups where e.g. the compact quantum group SUq(2) is not a real Hopf algebra but it is rather a
complex Hopf algebra equipped with a ∗-structure (It turns out that the ∗-real points do not form a real Hopf algebra).
Of course, saying that the real supergroup is compact means that the ∗-structure must have some additional properties
explaining the term compact. To this issue is devoted the first part of our thesis [11] whose results we explain in
Section 2.

In [11], we have proposed the axioms which the (compact) ∗-structure on complex supergroup should fulfill and we
have proved that every complex supergroup from the series SL(m|n, C) and O Sp(2r, s) possesses a unique compact
∗-structure. Then, in [10] we have performed a test of plausibility of our definition of the compact simple supergroup.
Indeed, we have shown that the realification of the complex supergroup SL(m|n, C) admits a superanalogue of
the global Iwasawa decomposition SL(m|n, C) = SU (m|n)s(AN ) where SU (m|n) is our compact real form of
SL(m|n, C) and s(AN ) is a real supergroup appropriately defined using the positive superroots. Finally, in this paper,
we corroborate our definition by showing that our compact simple supergroup SU (m|n) can be naturally equipped
with a Poisson–Lie structure coming from the structure of s(AN ).

The article is organised as follows: in Section 2, we recall the definition of a real Lie supergroup as a complex
commutative Hopf superalgebra equipped with a ∗-structure. We also give in this section the definition of real
Poisson–Lie supergroup and real Baxter–Lie superalgebra. The crucial point here is that all these structures appear
in two versions: the graded and the standard. In Section 3, we recall the definition of SL(m|n, C)R, SU (m|n) and
s(AN ) (cf. [10] and [11]). We establish that SL(m|n)R is the real Drinfeld double of the real supergroup SU (m|n)

and s(AN ), and we equip it with a Poisson–Lie structure based on the Yang–Baxter operator R (cf. [13] adapted to
the non-super case). Then we show that the maps describing the “embedding” of the real supergroup SU (m|n) and
s(AN ) in its double define also a Poisson ideal with respect to the Poisson–Lie bracket on the double. Factorizing the
algebra of “functions” (or, rather, of formal power series) on the double by these Poisson ideals then gives the sought
super Lu–Weinstein Poisson–Lie bracket on the compact supergroup SU (m|n) and the supergroup s(AN ) such that
the dual Poisson–Lie supergroup of SU (m|n) is s(AN ) and vice versa. Moreover, we close the article with three
supplementary annexes which give some technical results used in the core of the article.

2. Real Poisson–Lie supergroup

In our thesis (cf. [11]) we have defined a standard (graded) real supergroup. We give here these definitions, their
infinitesimal counterparts, the definitions of a standard (graded) real Baxter–Lie superalgebra as well as the notions
of standard (graded) real Poisson–Lie supergroups.

First, we recall the notion of supercommutative complex Hopf superalgebra. It is a sextuplet (H, µ, 1,∆, ε, S)

such that H = H0 + H1 is a superlinear space, µ : H ⊗ H → H such that µ( f ⊗ g) = (−1)| f ||g|µ(g ⊗ f )

(supercommutative, for short: we note in the following µ( f ⊗ g) = f g), f (gh) = ( f g)h (associativity), 1 f =

f 1 = f (unity), the coproduct ∆ : H → H ⊗ H fulfills (∆⊗)1 ◦ ∆ = (1 ⊗ ∆) ◦ ∆ (coassociativity), the counity
ε : H → C satisfies f ′ε( f ′′) = ε( f ′) f ′′

= f , the antipode S : H → H is such that f ′S( f ′′) = S( f ′) f ′′
= ε( f ),

∆( f g) = ∆( f )∆(g) and ε( f g) = ε( f )ε(g) with ∀ f, g, h ∈ H . Here we have used the sweedler notation
∆( f ) = f ′

⊗ f ′′ with f, f ′, f ′′
∈ H . A complex supergroup is a supercommutative complex Hopf superalgebra.
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Let H be a complex supergroup. A linear map δ : H → C is called an ε-derivation if it satisfies the following
property

δ( f g) = ε( f )δ(g) + δ( f )ε(g), (2.1)

for all f, g ∈ H . We note h the set of all ε-derivations on H . h is a complex superlinear space with the following
gradation: δ ∈ h0 if δ vanishes on H1, while δ ∈ h1 if δ vanishes on H0. This linear space is endowed with the
following superbracket

[δ1, δ2]( f ) = δ1( f ′)δ2( f ′′) − (−1)|δ1||δ2|δ2( f ′)δ1( f ′′), f ∈ H.

This superbracket is well defined because the superbracket of two ε-derivations is again an ε-derivation. It is easy to
prove that this superbracket is super-antisymmetric i.e.

[δ1, δ2] = −(−1)|δ1||δ2|[δ2, δ1],

as well as fulfills the super-Jacobi identity

(−1)|δ1||δ3|[δ1, [δ2, δ3]] + (−1)|δ3||δ2|[δ3, [δ1, δ2]] + (−1)|δ2||δ1|[δ2, [δ3, δ1]] = 0.

Thus (h, [., .]) is a complex Lie superalgebra; this is the complex Lie superalgebra of the complex supergroup H .

Remark 2.1. The definition of Lie superalgebra of Lie supergroup via the ε-derivation is well know in the non-super
case, as is shown in [15].

In view to define a real supergroup, we have to introduce the following two kinds of ∗-structures.

Definition 2.1. Let H be a Hopf superalgebra. A standard ∗-structure of H is an even map ∗ : H → H such that

(∆x)∗⊗∗
= ∆(x∗), (2.2)

ε(x∗) = ε(x), (2.3)

(λx + µy)∗ = λ̄x∗
+ µ̄y∗, (2.4)

(xy)∗ = x∗y∗, (2.5)

S(x∗) = (S(x))∗, (2.6)

(x∗)∗ = x, (2.7)

with x, y ∈ H and λ, µ ∈ C.
If the last property is replaced by the following

(xF)F = (−1)|x |x, (2.8)

then F is a graded F-structure.

Remark 1 1. In substance, the graded real structure is already introduced in the papers [4], [8] and [9].

Definition 2.2. (1) A standard real supergroup is a supercommutative complex Hopf superalgebra endowed with a
standard ∗-structure.

(2) A graded real supergroup is a supercommutative complex Hopf superalgebra endowed with a graded F
-structure.

Now we turn to the infinitesimal version of a standard and graded real supergroup.

Definition 2.3. (1) A standard real Lie superalgebra is a complex Lie superalgebra endowed with a
standard real structure.

(2) A graded real Lie superalgebra is a complex Lie superalgebra endowed with a graded real structure.

Thus we have to define the notion of standard and graded real structure.
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Definition 2.4. Let h be a complex Lie superalgebra.
(1) A standard real structure φ is an even map φ : h → h such that

φ(λx + µy) = λ̄φ(x) + µ̄φ(y),

φ2(x) = x,

φ([x, y]) = [φ(x), φ(y)]

with λ, µ ∈ C, x, y ∈ h.
(2) A graded real structure φ is an even map φ : h → h such that

φ(λx + µy) = λ̄φ(x) + µ̄φ(y),

φ2(x) = (−1)|x |x,

φ([x, y]) = [φ(x), φ(y)]

with λ, µ ∈ C, x, y ∈ h.

Remark 2.2. We frequently note a graded (standard) real Lie superalgebra h by the couple (h, φ) where φ is the
graded (standard) real structure of h.

Remark 2.3. The automorphisms φ, which fulfill the properties (1) or (2), have been introduced by Serganova [14].
However, she interprets only the automorphisms of the first kind as real form [14]. In our thesis [11] we explain why
the second morphisms generate also real form of a complex Lie superalgebra; for this it is crucial to work at the
functorial level.

Now, we prove a theorem which associates to a standard (graded) ∗-structure on a supergroup a standard (graded)
structure on the Lie superalgebra.

Theorem 2.1. Let (H, ∗) be a standard or graded real supergroup. Then the Lie superalgebra h is equipped with a
standard or graded real structure φ given by the following formula

φ(δ)( f ) = δ( f ∗), (2.9)

with δ ∈ h and f ∈ H.

Proof. We begin by the proof that φ(δ) is an ε-derivation. Effectively, we have

φ(δ)( f g) = δ( f ∗g∗) = δ( f ∗)ε(g∗) + ε( f ∗)δ(g∗) = φ(δ)( f )ε(g) + ε( f )φ(δ)(g).

(1) Antilinearity:

φ(λδ1 + µδ2)( f ) = λδ1( f ∗) + µδ2( f ∗) = λ̄φ(δ1)( f ) + µ̄φ(δ2)( f ),

with λ, µ ∈ C, δ1, δ2 ∈ h and f, g ∈ H .
(2) Lie superalgebra morphism:

φ([δ1, δ2])( f ) = [δ1, δ2]( f ∗)

= δ1( f ′∗) δ2( f ′′∗) − (−1)|δ1||δ2|δ2( f ′∗) δ1( f ′′∗)

= [φ(δ1), φ(δ2)]( f ),

for δ1, δ2 ∈ h and f ∈ H .
(3) φ2:
Let ∗ be a standard ∗-structure. We have

φ(φ(δ))( f ) = φ(δ)( f ∗) = δ(( f ∗)∗) = δ( f )

with f ∈ H .
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On the other hand, let F be a graded F-structure, we have

φ(φ(δ))( f ) = φ(δ)( f ∗) = δ(( f ∗)∗) = (−1)| f |δ( f ) = (−1)|δ|δ( f )

δ ∈ h, f ∈ H .
This ends the proof. �

In order to illustrate these definitions, we study the complex supergroup SL(m|n, C). First, we define C[[xi j ]]. It is
the superalgebra of formal series generated by xi j for i, j = 1 . . . m + n, it is a supercommutative Hopf superalgebra
for the coproduct, counity and antipode

∆(xi j ) = 1 ⊗ xi j + xi j ⊗ 1 +

m+n∑
k=1

xik ⊗ xk j , ε(xi j ) = 0,

S(xi j ) = −δi j + (1 + X)−1
i j ,

where X is the matrix defined by (X)i j = xi j and (1 + X)−1 is the inverse of the sum of the unity matrix 1 with
the matrix X . These three maps are defined on all the elements of C[[xi j ]] because they are superalgebra morphisms.
The gradation of the generators xi j is |xi j | = |i | + | j | where |i | = 0, | j | = 1 for respectively i = 1 . . . m, j =

m + 1 . . . m + n. Furthermore, the generators fulfill the following equalities xi j xkl = (−1)(|i |+| j |)(|k|+|l|)xkl xi j so that
C[[xi j ]] is supercommutative. The counity and the coproduct seem surely more familiar to the reader on the generators
ui j = δi j + xi j i.e.

∆(ui j ) =

m+n∑
k=1

uik ⊗ uk j , ε(ui j ) = δi j .

The supergroup SL(m|n, C) is the supercommutative Hopf superalgebra C[[xi j ]] factorised by the ideal of Hopf
superalgebra generated by the relation sdet(1 + X) − 1 = 0 with the superdeterminant defined by

sdet

(
A B
C D

)
=

det(A − B D−1C)

det(D)

where A, B, C , D are respectively m × m-matrices, m × n-matrices, n × m-matrices and n × n-matrices. We note the
complex Hopf superalgebra of SL(m|n, C) by SLm|n[[xi j ]].

Now, we turn to the Lie superalgebra of SLm|n[[xi j ]], we note it by sl(m|n, C). By definition sl(m|n, C) is the set
of ε-derivations on C[[xi j ]] which vanish on the ideal generated by sdet(1+X)−1 = 0. Thus, we begin by determining
the space of ε-derivations on C[[xi j ]]. In order to know an ε-derivation on C[[xi j ]], it is sufficient to evaluate it on
the generators xi j . We note δ(xi j ) = Mi j , thereby δ defines a supermatrix1 M which have the same parity of δ.
Reciprocally any supermatrix M defines an ε-derivation by the following formula δM (xi j ) = Mi j . Moreover, we have
the following equality

[δM , δN ](xi j ) = δ[M,N ](xi j ).

Hence, the complex Lie superalgebra of C[[xi j ]] is isomorphic to the Lie superalgebra of supermatrices M(m|n, C).
Moreover we have

δM (sdet(1 + X)) = −trT + trP = StrM.

Thereby sl(m|n, C) = {M ∈ M(m|n, C)/Str(M) = 0}.

1 The set of complex (m + n) × (m + n) supermatrices, noted M(m|n,C), forms a superlinear space whose elements are such that

M =

(
P Q
R T

)
where P, T are respectively m ×m, n ×n complex matrices and Q, R are respectively m ×n, n ×m complex matrices. The even complex matrices
are such that Q = R = 0 and odd complex supermatrices satisfy P = T = 0. The superbracket of M(m|n,C) is [M, N ] = M N −(−1)|M ||N |N M .
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The couple (SLm|n[[xi j ]], F) is a graded real supergroup with

xF
i j = (−1)(|i |+| j |)| j |S(x j i ).

The proof that this F-structure is graded is done in [10,11]. This F-structure gives on the Lie superalgebra sl(m|n, C)

the following graded real structure

φ(δM )(xi j ) = δφ(M)(xi j ) = δM (xF
i j ) = δ(−1)|M | M̄st (xi j ).

Thus φ(M) = (−1)|M |M̄st where the supertranspose of a supermatrix is defined by the following equality(
P Q
R T

)st

=

(
P t Rt

−Qt T t

)
,

with t the usual transposition of matrices. We remark that the real Lie algebra of fixed points of φ is su(m) ⊕ su(n) ⊕

u(1) which is the direct sum of three compact real forms. Thereby, we say that (SLm|n[[xi j ]], F) is a compact graded
real supergroup and we call it SU (m|n).

We have previously defined a real supergroup like a supercommutative Hopf superalgebra with a ∗-structure. Thus,
if we endow a real supergroup with a supplementary structure (for instance a Poisson superbracket), then it is necessary
to impose that the ∗-structure and the extra structure satisfy some compatibility relation. Here is an example with real
Poisson–Lie supergroup.

Definition 2.5. Let (H , ∗) a standard (or graded) real supergroup. (H, {., .}, ∗) is a standard (or graded) real
Poisson–Lie supergroup if it exists a bilinear map H × H → H noted ( f, g) → { f, g} such that for all f, g, h ∈ H
(i) it fulfills the super-Jacobi identity:

(−1)| f ||h|
{ f, {g, h}} + (−1)|h||g|

{h, { f, g}} + (−1)|g|| f |
{g, {h, f }} = 0,

(ii) it is super-antisymmetric:

{ f, g} = −(−1)| f ||g|
{g, f },

(iii) it fulfills the super-Leibniz rule:

{ f, gh} = { f, g}h + (−1)| f ||g|g{ f, h},

(iv) the coproduct ∆ of H is a Poisson morphism:

∆{ f, g} = {∆( f ),∆(g)},

(v) it is compatible with the ∗-structure:

{ f ∗, g∗
} = { f, g}

∗.

Remark 2.4. When a map ( f, g) → { f, g} fulfills the properties (i) to (iii), it is said that it is a Poisson superbracket;
if furthermore it fulfills (iv) it is said that it is a Poisson–Lie superbracket. The superbracket is defined on H ⊗ H
(cf. [2]) by

{ f1 ⊗ f2, g1 ⊗ g2} = (−1)|g1|| f2|{ f1, g1} ⊗ f2g2 + (−1)|g1|| f2| f1g1 ⊗ { f2, g2}.

It fulfills automatically the super-Jacobi identity, super-Leibniz rule and superantisymmetry if {., .} fulfills them.

Remark 2.5. The Poisson–Lie groups and quantum groups are intimately linked, in fact the first are obtained as a
quasi-classic limit of the last. In particular, the compatibility of the product and the ∗-structure gives precisely, via
the quasi-classic limit, our condition (v), which expresses the compatibility of the Poisson superbracket with the
∗-structure.

In the same order of idea, we give the definition of a Poisson–Lie sub-supergroup.
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Definition 2.6. Let (H, {., .}, *) be a standard (or graded) real Poisson–Lie supergroup. Then K is a Poisson–Lie
sub-supergroup of (H, {., .}, *) if

(i) it exists an ideal of Hopf superalgebra I such that K = H/I ,
(ii) I ∗

⊂ I ,
(iii) {I, H} ⊂ I .

Remark 2.6. An ideal I of Hopf superalgebra H is a subset of H such that I.H ⊂ I , ε(I ) = 0, ∆(H) ⊂ I ⊗HuH⊗I
and S(I ) ⊂ I .

The property (iii) in the previous definition means that I is an ideal of Poisson superalgebra.

As in the non-super case, a super Poisson–Lie structure equips the dual linear of its Lie superalgebra with a structure
of Lie superalgebra. Before proving this result, we introduce the linear dual of the Lie superalgebra of a supergroup.
In fact, we have:

Theorem 2.2. Let H be a complex supergroup and Ker ε be the kernel of the counit ε of H. Then m = Ker ε/(Ker ε)2

is the linear dual of the Lie superalgebra h of H i.e. m∗
= h.

Proof. Let δ be an element of h and we note by the same letter its restriction to Ker ε. As δ fulfills the property
δ( f g) = δ( f )ε(g) + ε( f )δ(g), ∀ f, g ∈ H , we deduce that δ vanish on m2

ε . So δ factorise through a linear map
[δ] : m → C i.e. [δ] ∈ m∗. Thus, the duality between h and m is given by the following formula

〈[δ],Ω( f )〉 = δ( f ) (2.10)

where Ω( f ) means the equivalence classes of f in m for f ∈ Ker ε.
Reciprocally, let d ∈ m∗ and δ be a linear map from H to C such that δ( f ) = d([ f − ε( f )]). Since we have

f g − ε( f g) = ( f − ε( f ))ε(g) + (g − ε(g))ε( f ) + ( f − ε( f ))(g − ε(g)),

i.e. f g − ε( f g) and ( f − ε( f ))ε(g) + (g − ε(g))ε( f ) define the same equivalence classes, we deduce

δ( f g) = d([ f g − ε( f g)]) = d([ f − ε( f )])ε(g) + ε( f )d([g − ε(g)]) = δ( f )ε(g) + ε( f )δ(g).

These two linear morphisms are clearly inverse of each other. Moreover, m∗ is equipped of the following superbracket

[x, y]m∗([ f ]) = x([ f ′
− ε( f ′)])y([ f ′′

− ε( f ′′)]) − (−1)|x ||y|y([ f ′
− ε( f ′)])x([ f ′′

− ε( f ′′)])

for all f ∈ Ker ε and x, y ∈ m∗. And it is easy to observe that for the two previous maps the image of the superbracket
is the superbracket of the image, thus h and m∗ are isomorphic Lie superalgebras. �

Remark 2.7. This theorem is a generalisation of a well known theorem in the non-super case, as we can find it in [12].
We give it in order to keep this paper self-contained.

As in the non-super case, a Poisson–Lie structure induces on the linear dual of its Lie superalgebra a structure of
Lie superalgebra. This is the following proposition.

Proposition 2.1. Let (H, F, {., .}H ) be a graded (or standard) real Poisson–Lie supergroup and (h, φ) its graded (or
standard) real Lie superalgebra. Then the linear dual h∗

= Ker εH /(Ker εH )2 of h is canonically endowed with a
graded (or standard) real Lie superalgebra given by the following formula

[ΩH ( f ),ΩH (g)]h∗ = ΩH ({ f, g}H ), ϕ(ΩH ( f )) = ΩH ( f F) (2.11)

with ΩH : Ker εH → Ker εH /(Ker εH )2 and f, g ∈ Ker εH .

Proof. The gradation of h∗ is the following: ΩH ( f ) ∈ h∗

0 if f ∈ Ker εH and | f | = 0 whereas ΩH ( f ) ∈ h∗

1 if
f ∈ Ker εH and | f | = 1. As the coproduct of H is a Poisson morphism, we deduce that εH ({ f, g}H ) = 0, ∀ f, g ∈ H .
Thus, for f, g ∈ Ker εH we have { f, g}H ∈ Ker εH , so {., .}H is defined on Ker εH . Moreover, as {., .}H fulfills the
super-Leibniz rule, it turns out that (Ker εH )2 is a Poisson ideal of the restriction of {., .}H to Ker εH . Then, it is easy
to observe that the following bilinear map [., .]h∗h∗

× h∗
→ h∗ defined by

[ΩH ( f ),ΩH (g)]h∗ = {ΩH ( f ),ΩH (g)}H = ΩH ({ f, g}H )

is super-antisymmetric and satisfies the super-Jacobi identity since {., .}H fulfills them.
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On the other hand, the map ϕ : h∗
→ h∗ such that ϕ(ΩH ( f )) = ΩH ( f F) is well defined i.e. f F

∈ Ker εH
because εH ( f F) = (εH ( f )). It is clearly antilinear and involutive since (λ f + µg)F = λ̄ f F

+ µ̄gF and
( f F)F = (−1)| f | f ∀ f, g ∈ H and λ, µ ∈ C. Furthermore, from { f F, gF

}H = { f, g}
F
H we deduce that ϕ is also a

morphism of Lie superalgebra. To conclude, (h∗, ϕ) is a graded real Lie superalgebra. The standard case follows from
similar arguments. �

There exist many ways to equip a Lie group G with a Poisson–Lie bracket. Among them, there are two which are
frequently used. The first uses a structure of Baxter–Lie algebra on the Lie algebra of the Lie group (it is the approach
of the classical r -matrix). The second is based on the injection of the Lie group G in a bigger group D, which is
already equipped with a structure of Poisson–Lie group. The injection must fulfill the axioms of the non-super version
of the Definition 2.6 i.e. the structure of Poisson–Lie on G comes from the Poisson–Lie group D. In the next section,
we use the two points of view. First we construct a classical r -matrix which endows SL(m|n, C)R with a Poisson–Lie
structure and secondly we show that this latter goes down on SU (m|n) such that it becomes a Poisson–Lie supergroup.

It remains to define the notion of Baxter–Lie superalgebra (in the non-super case see [13]).

Definition 2.7. Let (h, φ) be a standard (graded) real Lie superalgebra (cf. Definition 2.3), R an even linear map on
h. We said that (h, φ, R) is a standard (graded) real Baxter–Lie superalgebra if

(i) h is provided with an invariant scalar product denoted (., .)h such that

(φ(x), φ(y))h = (x, y)h, ∀x, y ∈ h,

(ii) R is antisymmetric:

(R(x), y)h = −(x, R(y))h, ∀x, y ∈ h,

satisfies the Baxter–Lie equation:

[R(x), R(y)] = R([R(x), y] + [x, R(y)]) − [x, y], ∀x, y ∈ h

and fulfills the following relation of compatibility with the standard (graded) real structure φ:

φ(R(x)) = R(φ(x)), x ∈ h.

Remark 2.8. Thus, in the non-super case, the relations of compatibilities of the real structure φ with R and the scalar
product allow these last two maps to be defined on the space of fixed points of φ. In other words, the real form
associated to φ is a Baxter–Lie algebra on R.

3. Super-Poisson–Lie structure on SU(m|n) via SL(m|n, C)R

We begin with the definition of the graded real supergroups SL(m|n, C)R, SU (m|n) and s(AN ), where it clearly
appears that SU (m|n) and s(AN ) are sub-supergroups of SL(m|n, C)C (cf. [10] and [11]). Next, we determine their
Lie superalgebra, and we endow the Lie superalgebra of SL(m|n, C)R with a structure of graded real Baxter–Lie
superalgebra. Finally, we establish that SL(m|n, C)R is the double of SU (m|n) and s(AN ), these two last supergroups
becoming dual graded real Poisson–Lie supergroups.

Definition 3.1. The Hopf superalgebra and F-structure which define the graded real supergroup SL(m|n, C)R are
respectively

SLm|n[[yi j , zi j ]] = SLm|n[[yi j ]] ⊗ SLm|n[[zi j ]]

yF
i j = (−1)(|i |+| j |)| j |S(z j i ), zF

i j = (−1)(|i |+| j |)| j |S(y j i ).
(3.1)

Definition 3.2. The Hopf superalgebra which defines the graded real supergroup SU (m|n) is

SUm|n[[yi j , zi j ]] = SLm|n[[yi j , zi j ]]/I

where I is the Hopf ideal generated by the relations

yi j − zi j = 0, ∀i, j = 1 . . . m + n.
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The ideal I fulfills I F
⊂ I , where F is the graded F-structure of SLm|n[[yi j , zi j ]] (cf. Eq. (3.1)), thus

SUm|n[[yi j , zi j ]] is endowed with a graded F-structure.

Definition 3.3. The Hopf superalgebra which defines the graded real supergroup s(AN ) is

SLm|n[[yi j , zi j ]]/J

where J is the Hopf ideal generated by the relations

y j i = zi j = 0 ∀i > j, S(yi i ) − zi i = 0.

The ideal J fulfills JF
⊂ J , where F is the graded F-structure of SLm|n[[yi j , zi j ]] (cf. Eq. (3.1)), thus

SUm|n[[yi j , zi j ]] is endowed with a graded F-structure.

Remark 3.1. In the following, we work preferentially with the generators ui j = δi j + yi j and wi j = δi j + zi j . One
remarks that in these variables the coproduct and counit are

∆(ui j ) =

m+n∑
k=1

uik ⊗ uk j , ∆(wi j ) =

m+n∑
k=1

wik ⊗ wk j , ε(ui j ) = δi j , ε(wi j ) = δi j .

Now, we determine the Lie superalgebra of these supergroups.
The Lie superalgebra d of SLm|n[[yi j , zi j ]] consists in the ε-derivations (cf. (2.1)) δ(A,B) such that

δ(A,B)(yi j ) = Ai j , δ(A,B)(zi j ) = Bi j , ∀A, B ∈ sl(m|n, C).

Thus, d is isomorphic to sl(m|n, C) ⊕ sl(m|n, C). Furthermore, the F-structure of SLm|n[[yi j , zi j ]] (cf. Eq. (3.1))
provides d with the following graded real structure (cf. Theorem 2.1)

φ(δ(A,B))( f ) = δφ(A,B)( f ) = δ(A,B)( f F), φ(A, B) = (−(−1)|B| Bst , −(−1)|A| Ast )

because one has

δ(A,B)(yF
i j ) = −(−1)(|i |+| j |)| j | B̄ j i , δ(A,B)(z

F
i j ) = −(−1)(|i |+| j |)| j | Ā j i .

The Lie superalgebra g of SUm|n[[yi j , zi j ]] is composed of the ε-derivations of SLm|n[[yi j , zi j ]] which vanish on the
Hopf ideal I i.e. g = {δ(A,A), A ∈ sl(m|n, C)}. Moreover, g is a graded real Lie superalgebra because the graded real
structure φ of d fulfills φ(g) ⊂ g and we note this graded real Lie superalgebra by (g, φG) where φG = φ|g .

The Lie superalgebra b of s(AN )[[yi j , zi j ]] is the set of ε-derivations of SLm|n[[yi j , zi j ]] which vanish on the
Hopf ideal J . It is easy to prove that b = {δ(A,B)/A ∈ (sl(m|n, C)− ⊕ sl(m|n, C)0), B ∈ (sl(m|n, C)0 ⊕

sl(m|n, C)+), A0 + B0 = 0} (for the notations cf. Annex 1 on sl(m|n, C)). Furthermore, b is a graded real Lie
superalgebra because the graded real structure φ fulfills φ(b) ⊂ b and we note this graded real Lie superalgebra by
(b, φB) where φB = φ|b .

Now, we show that d is graded real Baxter–Lie superalgebra. Indeed, d is endowed with the following
supersymmetric invariant scalar product

((A, B), (C, D))d = (A, C)sl − (B, D)sl , (3.2)

where (A, C)sl = −
i
2 Str(AC) (see Annex 1). This scalar product fulfills the relation of compatibility with the graded

real structure φ i.e. one has

(φ(A, B), φ(C, D))d = ((A, B), (C, D))d.

d is also provided with the linear operator Rd defined by

Rd = Pb − Pg.

This operator is antisymmetric and satisfies the Yang–Baxter equation and the compatibility relation with φ.
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Remark 3.2. One observes that g and b are isotropic for the scalar product (3.2), d = g u b and g, b are Lie sub-
superalgebra of d, nevertheless [g, b] 6= 0. These properties imply that (d, g, b) is a Manin supertriple as it is defined
in [2].

For a classical r -matrix R on a Lie algebra of a Lie group G, it is associated in [13] a Poisson–Lie bracket on G.
The super case have been treated in [2], thus the superbracket (3.3) in the following theorem is inspired from the one
defined in [2].

It is time to write the main theorems of this article.

Theorem 3.1. Let SL(m|n, C)R be the graded real supergroup equipped with the following superbracket

{ f, g} =
1
2

m+n∑
a=1

(−1)| f ||a|(Rd(ĥa), ĥb)d[∇
L
ha

f ∇
L
hb

g − ∇
R
ha

f ∇
R
hb

g], (3.3)

∀ f, g ∈ SLm|n[[yi j , zi j ]], where ha and ĥb are the dual basis of d i.e. (ha, ĥb)d = δab. Then we have the following
properties:

(i) this superbracket is a Poisson–Lie superbracket on (SLm|n[[yi j , zi j ]], F),
(ii) I and J are Poisson ideals,

(iii) { f F, gF
} = { f, g}

F where yF
i j = (−1)(|i |+| j |)| j |S(z j i ), zF

i j = (−1)(|i |+| j |)| j |S(y j i ).

Corollary 3.1. SUm|n[[yi j , zi j ]] and s(AN )[[yi j , zi j ]] are graded real Poisson–Lie sub-supergroups of
SLm|n[[yi j , zi j ]] for the previous superbracket (3.3).

Theorem 3.2. Let (SU (m|n), F) and (s(AN ), F) be the graded real Poisson–Lie supergroup defined in the previous
corollary, (g, φG) and (b, φB) its graded real Lie superalgebras. We note by g∗ and b∗ the linear supervector spaces
of respectively g and b. Then the Poisson–Lie superbracket and the graded F-structure of SU (m|n) induce on g∗

a structure of graded real Lie superalgebra denoted (g∗, ϕG) (cf. Proposition 2.1) isomorphic to (b, φB). Similarly,
the Poisson–Lie superbracket and the graded real F-structure of s(AN ) induce on b∗ a structure of graded real Lie
superalgebra denoted (b∗, ϕB) (cf. Proposition 2.1) isomorphic to (g, φG).

Remark 3.3. Theorem 3.2 states the duality of Poisson–Lie for the graded real supergroup (SU (m|n), F) and
(s(AN ), F), i.e. the duality with the graded F-structures.

Remark 3.4. The superbracket (3.3) has already been introduced in the article [2]. Nevertheless, its use to define a
double seems new.

Moreover, this superbracket is basis independent. The operators used in the formula (3.3) are defined by the
following equalities

∇
R( f ) = δ( f ′) f ′′, ∇

L( f ) = (−1)|∇
L
|(| f |+1) f ′δ( f ′′), ∀ f ∈ SLm|n[[yi j , zi j ]]. (3.4)

These operators fulfill the super-Leibniz rule i.e.

∇( f g) = ∇( f )g + (−1)|∇|| f | f ∇(g), ∀ f, g ∈ SLm|n[[yi j , zi j ]],

and the following properties

∆(∇ R( f )) = (∇ R
⊗ 1)∆( f ), ∆(∇L( f )) = (1 ⊗ ∇

L)∆( f ), ∀ f ∈ SLm|n[[yi j , zi j ]].

Proof of the Theorem 3.1. (i) Poisson–Lie superbracket: First, we show that ∆ is a Poisson morphism (cf.
proposition (iv) Definition 2.5). With the help of the formula (3.4) we rewrite the superbracket (3.3) with the ε-
derivations, i.e. we have

{ f, g} = (−1)|a||g|rab f ′ δa f ′′ g′ δbg′′
− (−1)|a|| f |rabδa f ′ f ′′ δbg′ g′′

where rab
=

1
2 (Rdĥa, ĥb)d, δa = δha and f, g ∈ SLm|n[[yi j , zi j ]].
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On the one hand, we have

∆{ f, g} = (−1)|a||g|+|g′
|| f ′′

|rab f ′g′
⊗ f ′′g′′δa f ′′′δbg′′′

− (−1)|a|| f |+|g′′
|| f ′′′

|rabδa f ′δbg′ f ′′g′′
⊗ f ′′′g′′′. (3.5)

On the other hand, we have

{∆ f,∆g} = (−1)| f ′′
||g′

|
{ f ′, g′

} ⊗ f ′′g′′
+ (−1)| f ′′

||g′
| f ′g′

⊗ { f ′′, g′′
}

= (−1)| f ′′′
|(|g′

|+|g′′
|)+a(|g′

|+|g′′
|)rab f ′g′δa f ′′δbg′′

⊗ f ′′′g′′′

− (−1)| f ′′′
|(|g′

|+|g′′
|)+a(| f ′

|+| f ′′
|)rabδa f ′δbg′ f ′′g′′

⊗ f ′′′g′′′

+ (−1)|g
′
|(| f ′′

|+| f ′′′
|)+a(|g′′

|+|g′′′
|)rab f ′g′

⊗ f ′′g′′δa f ′′′δbg′′′

− (−1)|g
′
|(| f ′′

|+| f ′′′
|)+a(| f ′′

|+| f ′′′
|)rab f ′g′

⊗ δa f ′′δbg′′ f ′′′g′′′. (3.6)

We observe that δa f vanish when | f | 6= |a|, which means that the a priori non-zero terms are such that | f | = |a|.
Thus, the exponent of the sign of the first term becomes (| f ′′′

| + | f ′′
|)(|g′

| + |g′′
|) = (| f | + | f ′

|)(|g| + |g′′′
|) and the

exponent of the sign of the fourth term is equal to (| f ′′
|+ | f ′′′

|)(|g′′
|+ |g′

|) = (| f |+ | f ′
|)(|g|+ |g′

|). So the first and
last term cancel each other. On the other hand, the exponent of the sign of the second term is |a|| f |+ | f ′′

||g′′
| and for

the third one we have | f ′′
||g′

| + |a||g|. Thus, the expression (3.6) is equal to the expression (3.5), which implies that
∆ is a Poisson morphism for the superbracket (3.3).

We deduce the superantisymmetry of the superbracket from the supersymmetry of the scalar product (., .)d

and the antisymmetry of Rd. This superbracket fulfills also the super-Leibniz rule because the operators ∇
R,L
ha

are
superderivations.

It remains to prove the super-Jacobi identity. We define the following Yang–Baxter superbracket2

[∇
L ,R
r1

⊗ ∇
L ,R
r2

, ∇
L ,R
r ′ ⊗ ∇

L ,R
r ′′ ] = [∇

L ,R
r1

, ∇
L ,R
r ′ ] ⊗ ∇

L ,R
r ′′ ⊗ ∇

L ,R
r2

+ ∇
L ,R
r ′ ⊗ ∇

L ,R
r1

⊗ [∇
L ,R
r2

, ∇
L ,R
r ′′ ] − ∇

L ,R
r ′ ⊗ [∇

L ,R
r ′′ , ∇L ,R

r1
] ⊗ ∇

L ,R
r2

.

We used also the following convention

∇A ⊗ ∇B ⊗ ∇C ( f ⊗ g ⊗ h) = (−1)| f |(|B|+|C |)+|g||C |
∇A f ∇B g∇C h.

Then, the super-Jacobi identity is equivalent to

[∇
L
r1

⊗ ∇
L
r2

, ∇L
r ′ ⊗ ∇

L
r ′′ ] f ⊗ g ⊗ h + [∇

R
r1

⊗ ∇
R
r2

, ∇ R
r ′ ⊗ ∇

R
r ′′ ] f ⊗ g ⊗ h = 0,

where r =
∑m+n

i, j=1(R(ĥi ), ĥ j )hi ⊗ h j = r ′
⊗ r ′′

= r1 ⊗ r2. Moreover, from the fact that Rd fulfills the Yang–Baxter
identity and is antisymmetric we deduce that

[∇
L
r1

⊗ ∇
L
r2

, ∇L
r ′ ⊗ ∇

L
r ′′ ] =

m+n∑
i, j,k=1

(ĥi , [ĥ j , ĥk])d∇
L
hi

⊗ ∇
L
h j

⊗ ∇
L
hk

, (3.7)

[∇
R
r1

⊗ ∇
R
r2

, ∇ R
r ′ ⊗ ∇

R
r ′′ ] = −

m+n∑
i, j,k=1

(ĥi , [ĥ j , ĥk])d∇
R
hi

⊗ ∇
R
h j

⊗ ∇
R
hk

. (3.8)

These two expressions are basis independent, thereby we write them with the basis ei = (vi , 0), (0, vi ) and its dual
basis êi = (v̂i , 0), (0, −v̂i ). Furthermore, it is sufficient to prove the super-Jacobi identity on three generators taken
among ui j , wab. Thus, we evaluate the terms of the sums (3.7) and (3.8) on the generators uab, ucd , wmn . We have

(−1)|uab|(|k|+| j |)+|ucd || j |((v̂i , 0), [(v̂ j , 0), (0, −v̂k)])d∇
R,L
i uab ∇

R,L
j ucd ∇

R,L
k wmn .

But the term [(v̂ j , 0), (0, −v̂k)] is zero; this proves the super-Jacobi identity on three generators uab, ucd , wmn . The
proof is the same for three generators uab, wcd , wmn . Therefore, it remains to prove the super-Jacobi identity on three

2 This Yang–Baxter superbracket has been already defined in [2].
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generators of the same kind. We do it for three generators chosen among the generators uab, the proof is identical for
the generators wcd . Thus we don’t give it. We have the following equality (cf. Annex 2)

m+n∑
i, j,k=1

(v̂i , [v̂ j , v̂k])sl∇
R,L
vi

⊗ ∇
R,L
v j

⊗ ∇
R,L
vk

=

m+n∑
a,b,c,d,s,t=1

(Êab, [Êcd , Êst ])sl∇
R,L
Eab

⊗ ∇
R,L
Ecd

⊗ ∇
R,L
Est

, (3.9)

where Êst = (−1)|s|2i Ets and fulfills (E pq , Êst )sl = δpsδqt . Then by a direct computation we find

m+n∑
a,b,c,d,s,t=1

(Êab, [Êcd , Êst ])sl∇
L
Eab

⊗ ∇
L
Ecd

⊗ ∇
L
Est

(ui j ⊗ ukl ⊗ u pq)

−

m+n∑
a,b,c,d,s,t=1

(Êab, [Êcd , Êst ])sl∇
R
Eab

⊗ ∇
R
Ecd

⊗ ∇
R
Est

(ui j ⊗ ukl ⊗ u pq) = 0. (3.10)

Thus, we have proved the super-Jacobi identity.

(ii) I, J Poisson ideals: In view to prove that I, J are Poisson ideals for the superbracket (3.3), we express this
superbracket in another basis. Let Ti , ti be a basis of respectively g and b defined by (cf. Annex 1 for notation)

Ti = {(Eα, Eα), (E−α, E−α), (Hµ, Hµ), (Ẽβ , Ẽβ), (Ẽ−β , Ẽ−β),

(H̃ν, H̃ν), (Vγ , Vγ ), (V−γ , V−γ ), (H0, H0)}, (3.11)

ti = {(2i E−α, 0), (0, −2i Eα), (i Hµ, −i Hµ), (2i Ẽ−β , 0), (0, −2i Ẽβ),

(i H̃ν, −i H̃ν), (2iV−γ , 0), (0, 2iVγ ), (i H0, −i H0)}. (3.12)

These basis fulfill (Ti , t j )d = δi j . Since d = g u b, the vectors Ti , ti are a basis of d, and its dual basis is
T̂i = ti , t̂i = (−1)|i |Ti . As Rd = Pb − Pg, we deduce that Rd(T̂i ) = ti et Rd(t̂i ) = −(−1)|i |Ti . In this basis
Ti , ti the expression of the superbracket (3.3) becomes

{ f, g} =
1
2

[
n+m∑
a=1

(−1)|a|| f |
∇

L
Ta

f ∇
L
ta g − (−1)|a|+|a|| f |

∇
L
ta f ∇

L
Ta

g

− (−1)|a|| f |
∇

R
Ta

f ∇
R
ta g + (−1)|a|+|a|| f |

∇
R
ta f ∇

R
Ta

g

]
. (3.13)

Moreover, we have (cf. Annex 3)

C R
= C L

with

C L ,R
=

m+n∑
a=1

∇
L ,R
Ta

⊗ ∇
L ,R
ta + (−1)|a|

∇
L ,R
ta ⊗ ∇

L ,R
Ta

.

From this equality, we deduce the following new expression of the superbracket (3.13)

{ f, g} =

n+m∑
i=1

(−1)|i || f |(∇L
Ti

f ∇
L
ti g − ∇

R
Ti

f ∇
R
ti g). (3.14)

Then, since Ti is a basis of g, the ideal I is invariant under the superderivations ∇
R,L
Ti

. Therefore, from the expression
(3.14) we have {I, f } ⊂ I for all f ∈ SLm|n[[yi j , zi j ]]. Similarly, since ti is a basis of b, J is invariant under the
superderivations ∇

R,L
ti and so we deduce from the expression (3.14) that { f, J } ⊂ J for all f ∈ SLm|n[[yi j , zi j ]].
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Thus, the Hopf ideal I, J are Poisson ideals. Furthermore, it is clear that (because the superbracket (3.3) is
Poisson–Lie) the superbrackets on SUm|n[[yi j , zi j ]] and s(AN )[[yi j , zi j ]] are super Poisson–Lie.

(iii) { f, g}
∗

= { f ∗, g∗
} : First, we remark that

∇
R
M ( f ∗) = (∇ R

φ(M) f )∗, ∇
L
M ( f ∗) = (∇L

φ(M) f )∗.

Thus, we have

{ f ∗, g∗
} =

m+n∑
a,b=1

(−1)|a|| f |(Rd(ĥa), ĥb)d[∇
L
ha

f ∗
∇

L
hb

g∗
− ∇

R
ha

f ∗
∇

R
hb

g∗
]

=

m+n∑
a,b=1

(−1)|a|| f |(Rd(ĥa), ĥb)d[(∇
L
φ(ha) f )∗ (∇L

φ(hb)g)∗

− (∇ R
φ(ha) f )∗ (∇ R

φ(hb)g)∗].

In exchanging ha by φ(ha) and by observing that φ̂(ha) = φ(ĥa), we deduce

{ f ∗, g∗
} =

m+n∑
a,b=1

(−1)|a|| f |(Rd(φ̂(ha)), φ̂(hb))d[(∇
L
φ2(ha)

f )∗ (∇L
φ2(hb)

g)∗

− (∇ R
φ2(ha)

f )∗ (∇ R
φ2(hb)

g)∗]

=

m+n∑
a,b=1

(−1)|a|| f |(Rd(ĥa), ĥb)d[(∇
L
ha

f )∗ (∇L
hb

g)∗ − (∇ R
ha

f )∗ (∇ R
hb

g)∗]

= { f, g}
∗.

Proof of the Corollary 3.1. It is a direct consequence of the previous Theorem 3.1. �

Proof of the Theorem 3.2. The strategy of the proof is the following. First we prove that the Poisson–Lie
superbracket (3.14) and the ∗-structure of SLm|n[[yi j , zi j ]] induce (because of the Proposition 2.1) respectively a
structure of the direct sum of Lie superalgebra on d∗

= G∗
⊕ B∗ and a graded real structure ϕ on d∗, which leave

invariant G∗ and B∗. Here, G∗ (B∗) is defined like the space of linear forms on d = g u b which cancel on b (g) i.e.
G∗ and B∗ are naturally identified to g∗ and b∗ (i.e. with the linear dual of g and b). Next, we show that (G∗, ϕ|G∗ )

and (B∗, ϕ|B∗ ) are respectively isomorphic to (b, φB) and (g, φG). On the other hand, the dual space of g and b

noted g∗, b∗ are also defined directly from SUm|n[[yi j , zi j ]] and s(AN )[[yi j , zi j ]] as3 g∗
= Ker εG/(Ker εG)2 and

b∗
= Ker εB/(Ker εB)2. Then, since SUm|n[[yi j , zi j ]] and s(AN )[[yi j , zi j ]] are graded real Poisson–Lie supergroups,

g∗ and b∗ are graded real Lie superalgebras which we denote respectively (g∗, ϕG) and (b∗, ϕB). Finally, we show
that (g∗, ϕG) and (b∗, ϕB) are isomorphic respectively to (G∗, ϕ|G∗ ) and (B∗, ϕ|B∗ ). To conclude, we have proved
that (g∗, ϕG) and (b∗, ϕB) are isomorphic respectively to (b, φB) and (g, φG). These show that SUm|n[[yi j , zi j ]] and
s(AN )[[yi j , zi j ]] are dual Poisson–Lie supergroups.

Let fi , gi be two sets of elements of SLm|n[[yi j , zi j ]] with i = 1 . . . (m + n)2
− 1 defined by

fi =

{
m+n∑
i, j=1

(Eα)i j ui j ,

m+n∑
i, j=1

(E−α)i jwi j ,

m+n∑
i=1

−
(Hµ)i i

2
(S(ui i ) − wi i ),

m+n∑
i, j=1

(Ẽβ)i j ui j ,

m+n∑
i, j=1

(Ẽ−β)i jwi j ,

m+n∑
i=1

−
(H̃ν)i i

2
(S(ui i ) − wi i ),

m+n∑
i, j=1

(Vγ )i j ui j ,

m+n∑
i, j=1

(V−γ )i jwi j ,

m+n∑
i=1

−
(H∗

0 )i i

2
(S(ui i ) − wi i )

}
, (3.15)

3 We frequently note in this proof the maps on SUm|n [[yi j , zi j ]] (s(AN )[[yi j , zi j ]]) which come from maps on SLm|n [[yi j , zi j ]] by the index
G (B). Thus, εG is the counity of SUm|n [[yi j , zi j ]]. Similarly, we index by the letter D the maps defined on SLm|n [[yi j , zi j ]], for instance εD is
the counity of SLm|n [[yi j , zi j ]].
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gi =

{
m+n∑
k,l

((Ai )klukl + (Bi )klwkl)

}
, (3.16)

with

{(Ai , Bi )} =

{(
−

i

2
Eα,

i

2
Eα

)
,

(
−

i

2
E−α,

i

2
E−α

)
,

(
−

i

2
Hµ,

i

2
Hµ

)
,

(
i

2
Ẽβ , −

i

2
Ẽβ

)
,(

i

2
Ẽ−β , −

i

2
Ẽ−β

)
,

(
i

2
H̃ν, −

i

2
H̃ν

)
,

(
−

i

2
Vγ ,

i

2
Vγ

)
,

(
i

2
V−γ , −

i

2
V−γ

)
,

(
−

i

2
H∗

0 ,
i

2
H∗

0

)}
,

where H∗

0 =
n−m
n+m H0. We remark that fi ∈ J and gi ∈ I . Moreover, we note ΩD the canonical projection

ΩD : Ker εD → Ker εD/(Ker εD)2.

For δ(A,B) ∈ d and f ∈ Ker εD , the duality between d and d∗
= Ker εD/(Ker εD)2 is given by (cf. (2.10))

〈δ(A,B),ΩD( f )〉 = δ(A,B)( f ).

Thus the family of vectors ΩD( fi ) are in duality with δTi and cancel on δti , while ΩD(gi ) are in duality with δti and
vanish on δTi . So, ΩD( fi ) and ΩD(gi ) are respectively a basis of G∗ and B∗. From Proposition 2.1, we deduce that d∗

is endowed with the following Lie superbracket

[ΩD( f ),ΩD(g)]d∗ = ΩD({ f, g}) (3.17)

for all f, g ∈ Ker εD . Now, we show that d∗ is a direct sum of Lie superalgebra i.e. d∗
= G∗

⊕ B∗. The expression of
the Lie superbracket (3.17) in the basis ΩD( fi ),ΩD(gi ) is

[ΩD( f ),ΩD(g)]d∗ =

(m+n)2
−1∑

k=1

δTk ({ f, g})ΩD( fk) +

(m+n)2
−1∑

s=1

δts ({ f, g})ΩD(gs),

for all f, g ∈ SLm|n[[yi j , zi j ]]. Since δTk and δts cancel respectively on I, J and that { fi , g j } is in I and J , we deduce
that

[ΩD( fi ),ΩD(g j )]d∗ = 0.

We have also

[ΩD( fi ),ΩD( f j )]d∗ =

(m+n)2
−1∑

k=1

δTk ({ fi , f j })ΩD( fk), (3.18)

[ΩD(gi ),ΩD(g j )]d∗ =

(m+n)2
−1∑

k=1

δtk ({gi , g j })ΩD(gk). (3.19)

We find with the help of the expression (3.14) of the superbracket (3.3) the equalities

δTk ({ fi , f j }) = (−1)|i |+1
[δti , δTk ]( f j ), δtk ({gi , g j }) = (−1)|i || j |+1

[δT j , δtk ](gi ).

Moreover, from the following equality

[δTa , δtb ] =

(m+n)2
−1∑

k=1

([Ta, tb], tk)d δTk +

(m+n)2
−1∑

s=1

(Tk, [Ta, tb])d δtk

we deduce

[ΩD( fi ),ΩD( f j )]d∗ =

(m+n)2
−1∑

k=1

(−1)|i || j |(Tk, [ti , t j ])d ΩD( fk), (3.20)

[ΩD(gi ),ΩD(g j )]d∗ =

(m+n)2
−1∑

k=1

(−1)|i || j |+1([Ti , T j ], tk)d ΩD(gk). (3.21)
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Thus, d∗ is a direct sum of Lie superalgebra. On the other hand, with the help of Proposition 2.1, it turns out that d∗ is
endowed with the graded real structure

ϕ(ΩD( f )) = ΩD( f F),

for all f ∈ SLm|n[[yi j , zi j ]]. Furthermore, as I and J are invariant under F and fi , g j are respectively in I and J , it
turns out that G∗ and B∗ are invariant under ϕ. So (G∗, ϕ|G∗ ) and (B∗, ϕ|B∗ ) are graded real Lie superalgebras.

Now, we show that (G∗, ϕ|G∗ ) is isomorphic to (b, φB). Let ΩD(fa) = i |a|ΩD( fa). We have the following equality

[ΩD(fa),ΩD(fb)]d∗ =

(m+n)2
−1∑

c=1

(Tk, [ti , t j ])d ΩD(fk).

Let T be the isomorphism defined by

T : ΩD(fa) → δta

then the equality (3.20) implies

T ([ΩD(fa),ΩD(fb)]d∗) = [T (ΩD(fa)), T (ΩD(fb))]d

in other words T is an isomorphism of Lie superalgebra. Next with the help of the scalar product (., .)d we define the
isomorphism I : d∗

→ d by

〈x, ω〉 = (x, I(w))d,

where x ∈ d and ω ∈ d∗. Thus, I(ΩD(fa)) = i |a|δta . We remark that I(ω) = i |ω|T (ω), ∀ω ∈ G∗. Moreover, we have

ϕ(ΩD( f )) =

(m+n)2
−1∑

a=1

δTa ( f ∗)ΩD( fa).

We apply T on the two members of the previous equality

T (ϕ(ΩD( f ))) =

(m+n)2
−1∑

a=1

δTa ( f ∗) T (ΩD( fa))

=

(m+n)2
−1∑

a=1

(−i)|a|
〈φ(δTa ),ΩD( f )〉 δta

=

(m+n)2
−1∑

a=1

(−i)|a|(φ(δTa ), I(ΩD( f )))d δta

=

(m+n)2
−1∑

a=1

(i)|a|(δTa , φ(I(ΩD( f ))))d δta

= i | f | φ(I(ΩD( f ))).

From the fact that I(ω) = i |ω|T (ω), ∀ω ∈ G∗ and the previous equality we find

T (ϕ(ΩD( f ))) = φ(T (ΩD( f )))

i.e.

T ◦ ϕ ◦ T −1
= φ.

Thus, (G∗, ϕ|G∗ ) and (b, φB) are graded real Lie superalgebras.
We turn to the proof of the isomorphism of (B∗, ϕ|B∗ ) and (g, φG). Let ΩD(ga) = (−1)|a|+1ΩD(ga) and the

morphism S : B∗
→ g defined by

S(ΩD(ga)) = δTa .
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Thus, the equality (3.21) implies

S([ΩD(ga),ΩD(gb)]d∗) = [S(ΩD(ga)),S(ΩD(gb))]d

i.e. S is an isomorphism of Lie superalgebra from B∗ to g. The scalar product gives also an isomorphism from B∗ to
g such that I(ΩD(ga)) = −δTa . It appears that I = −S. On the other hand, the graded real structure is defined on B∗

by

ϕ(ΩD(g)) = ΩD(g∗).

We express this previous element in the basis ΩD(ga) i.e.

ϕ(ΩD(g)) =

(m+n)2
−1∑

a=1

〈φ(δta ),ΩD(g)〉ΩD(ga).

We apply S on each side of the previous equality, thus we have

S(ϕ(ΩD(g))) =

(m+n)2
−1∑

a=1

(φ(δta , I(ΩD(g))))dS(ΩD(ga))

=

(m+n)2
−1∑

a=1

(−1)|a|+1(φ2(δta , φ(I(ΩD(g)))))dδTa

= −(−1)|g|

(m+n)2
−1∑

a=1

(φ(I(ΩD(g)))), (δta )dδTa

= −(−1)|g|φ(I(ΩD(g))).

Thus, if |g| = 0 we have S ◦ ϕ = −φ ◦ I, but since I = −S we deduce S ◦ ϕ ◦ S−1
= φ. While for |g| = 1 we have

S ◦ ϕ = φ ◦ I i.e. S ◦ ϕ ◦ S−1
= −φ. In fact, we have

S ◦ ϕ ◦ S−1(M) = (−1)|M |φ(M) = Kφ(K −1 M)

with M = (A, B), A, B ∈ sl(m|n, C), K = diag(1m, −1n) and K M = (K A, K B). Thus, S ◦ ϕ ◦ S−1 is conjugated
to φ and so (B∗, ϕ|B∗ ) and (g, φG) are isomorphic graded real Lie superalgebras.

Now, we equip g∗ with a graded real Lie superalgebra, and we prove that it is isomorphic to (G∗, ϕ|G∗ ). Let iG ,ΩG
be the following morphism of superalgebra

iG : SLm|n[[yi j , zi j ]] → SUm|n[[yi j , zi j ]], ΩG : Ker εG → Ker εG/(Ker εG)2,

and remember that g∗
= Ker εG/(Ker εG)2 by definition. The Lie superalgebra of SUm|n[[yi j , zi j ]] is g =

{ε-derivation δ : SUm|n[[yi j , zi j ]] → C}, but every ε-derivation of g comes from an ε-derivation of SLm|n[[yi j , zi j ]]

which cancel on I . Thus, (δTi ) is an element of g defined by the following formula

(δTi )(iG( f )) = δTi ( f )

with f ∈ SLm|n[[yi j , zi j ]] and δTi ∈ d such that δTi (I ) = 0. Let ΩG(iG( fi )) be vectors of d∗, where fi are defined
by (3.15). It is in duality with the basis (δTi ) of d. Indeed we have

〈(δTi ),ΩG(iG( f j ))〉 = (δTi )(iG( f j )) = δTi ( f j ) = δi j .

So, the set ΩG(iG( fi )) is a basis of g∗. We define the Lie superbracket by

[ΩG(iG( f )),ΩG(iG(g))]g∗ = ΩG(iG({ f, g})) (3.22)

for all f, g ∈ Ker εD . On the other hand, we deduce from Eq. (3.18) that

{ fi , f j } =

(m+n)2
−1∑

k=1

δTk ({ fi , f j }) fk + (Ker εD)2.
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We evaluate ΩG ◦ iG on each side of the previous equation i.e.

ΩG(iG({ fi , f j })) =

(m+n)2
−1∑

k=1

δTk ({ fi , f j })ΩG(iG( fk)).

Thus, the isomorphism of supervector space T : g∗
→ G∗ defined by T(ΩG(iG( fi ))) = ΩD( fi ) is an isomorphism of

Lie superalgebra since from the previous equality and the formula (3.18), (3.22) we deduce

T([ΩG(iG( f )),ΩG(iG(g))]g∗) = [T(ΩG(iG( f ))), T(ΩG(iG(g)))]G∗ .

Finally, the graded real structure of g∗ is defined by

ϕG(ΩG(iG( f ))) = ΩG(iG( f ∗)).

But, from the expression of ΩG(iG( f ∗)) in the basis ΩG(iG( fi )), we find

ϕG(ΩG(iG( f ∗))) =

(m+n)2
−1∑

i=1

〈(δTi ),ΩG(iG( f ∗))〉ΩG(iG( fi ))

=

(m+n)2
−1∑

i=1

δTi ( f ∗)ΩG(iG( fi )).

We apply the morphism T on the previous equality

T(ϕG(ΩG(iG( f )))) =

(m+n)2
−1∑

i=1

δTi ( f ∗)ΩD( fi )

= 〈δTi ,ΩD( f ∗)〉ΩD( fi )

= ΩD( f ∗)

= ϕ|G∗ (ΩD( f )).

This implies

T ◦ ϕG ◦ T−1
= ϕ|G∗ .

In other words T is a graded real Lie superalgebra morphism.
In the same way, we can prove that b∗ is isomorphic like a graded real Lie superalgebra to (B∗, ϕ); the proof is

similar thus we don’t write it. �

Now, we explain why this construction is the super-version of the Lu–Weinstein–Drinfeld double.
For n = 0, we have dφ

= gφ u bφ
= sl(m, C)R = su(m) u an where dφ

= {x ∈ d : φ(x) = x}. Since the fixed
points of φ is the set {(X, −X̄ t ), X ∈ sl(m, C)}, the scalar product (., .)d becomes

((X, −X̄ t ), (Y, −Ȳ t ))d = Im(tr(XY )).

Thus, what we have done is the complexified version of the Lu–Weinstein–Drinfeld double. The fact that this
complexified double gives (for n = 0) a real double comes from the properties of the real structure φ with the
structure of a Lie algebra, the scalar product (., .)d and the classical r -matrix Rd.

3.1. Annex 1: sl(m|n, C)

In this annex, we give some useful properties for the Lie superalgebra sl(m|n, C) for m 6= n. We assume in this
section m 6= n.

The Lie superalgebra sl(m|n, C) = {M ∈ M(m|n, C) /Str(M) = 0} has the triangular decomposition

sl(m|n, C) = sl(m|n, C)+ ⊕ sl(m|n, C)0 ⊕ sl(m|n, C)−,

where sl(m|n, C)+ is the strict (zero on the diagonal) upper triangular complex matrices, sl(m|n, C)0 is the set of
supertraceless diagonal supermatrices and sl(m|n, C)− is the set of strict lower triangular supermatrices. Thus, every
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elements x ∈ sl(m|n, C) have the unique decomposition x = x+ + x0 + x− where xi ∈ sl(m|n, C)i , i ∈ {+, 0, −}.
On the other hand, sl(m|n, C) is provided with the following scalar product

(M, N )sl = −
i

2
Str(M N ), ∀M, N ∈ sl(m|n, C), (3.23)

which satisfies the following properties

([M, N ], P)sl = (M, [N , P])sl , (M, N )sl = (−1)|M ||N |(N , M)sl ,

∀M, N , P ∈ sl(m|n, C). When a scalar product fulfills the first property we said that it is invariant, while for the
second property we said that it is supersymmetric. Furthermore, sl(m|n, C) has the following properties:

(1) sl(m|n, C)i are Lie sub-superalgebras for i ∈ {+, 0, −} and [sl(m|n, C)0, sl(m|n, C)0 ⊕ sl(m|n, C)±] ⊂

sl(m|n, C)±,

(2) sl(m|n, C)+ ⊂ sl(m|n, C)⊥+, sl(m|n, C)− ⊂ sl(m|n, C)⊥−, sl(m|n, C)0 ∈ (sl(m|n, C)0⊕sl(m|n, C)−)⊥ where
g⊥ is the orthogonal of the set g in sl(m|n, C) for the scalar product (3.23).

Now, we give a basis of sl(m|n, C). We note Est the supermatrix such that (Est )i j = δsiδt j . A basis of sl(m|n, C)+
is

Eα = Est 1 ≤ s < t ≤ m, Ẽβ = i Est m + 1 ≤ s < t ≤ m + n,

Vγ = Est m + 1 ≤ t ≤ m + n, 1 ≤ s ≤ m.

These are the positive roots of sl(m|n, C), which we symbolize by α, γ > 0. A basis of sl(m|n, C)− is

E−α = E t
α, Ẽ−β = Ẽ t

β , V−γ = V t
γ ,

where t is the usual transposition. These are the negative roots α, β, γ < 0. While a basis of sl(m|n, C)0 is

Hk =
1

√
k(k + 1)

(
k∑

l=1

Ell − k Ek+1k+1

)
, k = 1 . . . m − 1,

H̃s =
i

√
s(s + 1)

(
s∑

l=m+1

Ell − s Es+1s+1

)
, s = m + 1 . . . m + n − 1,

to which we must add the following supervector

H0 =

√
n

√
m(n − m)

(
m∑

k=1

Ekk +
m

n

m+n∑
k=m+1

Ekk

)
, n > m

or

H0 =
i
√

n
√

m(m − n)

(
m∑

k=1

Ekk +
m

n

m+n∑
k=m+1

Ekk

)
, n < m.

Thus a basis of sl(m|n, C) is vi = (Eα, Hµ, Ẽβ , H̃ν, Vγ , H0), i = 1 . . . m + n − 1. This basis is normalised such that

Str(Eα E−β) = δαβ , Str(Ẽα Ẽ−β) = δαβ , Str(Vγ V−ε) = δγ ε,

Str(Hµ Hν) = δµν, Str(H̃µ H̃ν) = δµν, Str(H0 H0) = 1,

and the supertrace of other couples is zero. Furthermore, a basis v̂i is a dual basis of vi if it fulfills (vi , v̂ j )sl = δi j .

Thus, the dual basis of vi is v̂i = (Êα, Ĥµ,
ˆ̃Eβ ,

ˆ̃H ν, V̂γ , Ĥ0) such that
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Êα = 2i E−α, Ĥµ = 2i Hµ,
ˆ̃Eβ = 2i Ẽ−β ,

ˆ̃H ν = 2i H̃ν,

V̂γ = 2iV−γ , V̂−γ = −2iVγ , Ĥ0 = 2i H0,

with γ > 0 and α, β positive as well as negative roots.

3.2. Annex 2: Proof of the equality (3.9)

Let ei = {Eα, Hµ} be a basis of sl(m, C) ⊂ sl(m|n, C) and êi = {Êα, Ĥµ} the dual basis for (., .)sl , then we
define the Wess–Zumino–Witten form

W Z Wsl(m,C) =

m∑
i, j,k=1

(êi , [ê j , êk])sl∇
R,L
ei

⊗ ∇
R,L
e j

⊗ ∇
R,L
ek

=
1
6

m∑
i, j,k=1

(êi , [ê j , êk])sl∇
R,L
ei

∧ ∇
R,L
e j

∧ ∇
R,L
ek

.

We develop the right hand side of this equation and gather identical terms i.e. we obtain

W Z Wsl(m,C) =
(2i)3

6

(∑
α,β,γ

(E−α, [E−β , E−γ ])sl∇
R,L
Eα

∧ ∇
R,L
Eβ

∧ ∇
R,L
Eγ

+ 6
∑

α>0,β>0,µ

∇
R,L
E−α

∧ ∇
R,L
Eβ

∧ ∇
R,L
[Eα,E−β ]

)
.

On the other hand, we have the following equality

m∑
s,t,p,q,a,b=1

(Est , [E pq , Eab])sl∇
R,L
Est

∧ ∇
R,L
E pq

∧ ∇
R,L
Eab

=

m∑
s 6=t,p 6=q,a 6=b=1

(Ets, [Eqp, Eba])sl ∇
R,L
Est

∧ ∇
R,L
E pq

∧ ∇
R,L
Eab

+ 6
m∑

s>t,p>q=1

∇
R,L
Est

∧ ∇
R,L
E pq

∧ ∇
R,L
[Ets ,Eqp]

.

Since Eα = Est with t > s for α > 0 and s > t for α < 0, we deduce

W Z Wsl(m,C) =
(2i)3

6

m∑
s,t,p,q,a,b=1

(Est , [E pq , Eab])sl∇
R,L
Est

∧ ∇
R,L
E pq

∧ ∇
R,L
Eab

or

W Z Wsl(m,C) =
1
6

m∑
s,t,p,q,a,b=1

(Êts, [Êqp, Êba])sl∇
R,L
Est

∧ ∇
R,L
E pq

∧ ∇
R,L
Eab

(3.24)

with Êst = (−1)|s|2i Ets such that (Ets, Êab) = δt,bδs,a . In the same way, we prove that

W Z Wsl(n,C) =
1
6

m+n∑
s,t,p,q,a,b=m+1

(Êts, [Êqp, Êba])sl∇
R,L
Est

∧ ∇
R,L
E pq

∧ ∇
R,L
Eab

(3.25)

where we have defined W Z Wsl(n,C) in the basis ẽi = {Ẽα, H̃ν} and dual basis ˆ̃ei = {
ˆ̃Eα,

ˆ̃H ν} for the scalar product
(., .)sl by the expression

W Z Wsl(m,C) =
1
6

m∑
i, j,k=1

( ˆ̃ei , [ˆ̃e j , ˆ̃ek])sl∇
R,L
ẽi

∧ ∇
R,L
ẽ j

∧ ∇
R,L
ẽk

.
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Now, we develop the Wess–Zumino–Witten form of sl(m|n, C) written in the basis vi and dual basis v̂ j for (., .)sl (cf.
Annex sl(m|n, C)) i.e.

W Z Wsl(m|n,C) =

m+n∑
i, j,k=1

(v̂i , [v̂ j , v̂k])sl∇
R,L
vi

⊗ ∇
R,L
v j

⊗ ∇
R,L
vk

=
1
6

m+n∑
i, j,k=1

(v̂i , [v̂ j , v̂k])sl∇
R,L
vi

∧ ∇
R,L
v j

∧ ∇
R,L
vk

= W Z Wsl(n,C) + W Z Wsl(m,C)

+ (2i)3

(∑
γ>0

∇
R,L
V−γ

∧ ∇
R,L
[Vγ ,V−γ ]

∧ ∇Vγ

+

∑
β,γ>0,β 6=γ,α

([Vβ , V−γ ], E−α)sl∇
R,L
V−β

∧ ∇
R,L
Eα

∧ ∇
R,L
Vγ

+

∑
β,γ>0,β 6=γ,α

([Vβ , V−γ ], Ẽ−α)sl∇
R,L
V−β

∧ ∇
R,L
Ẽα

∧ ∇
R,L
Vγ

)
. (3.26)

With the use of Ets , because we have Eα = Est , Ẽβ = i Ekl and Vγ = Eab, and the following decomposition

[Vγ , V−γ ] =

m+n∑
s=1

([Vγ , V−γ ], Êss)sl Ess

the expression (3.26) becomes

W Z Wsl(m|n,C) = W Z Wsl(n,C) + W Z Wsl(m,C)

+ (2i)3

( ∑
|s|=|t |=0,|p|=|a|=1,|b|=|q|=0

([Eba, E pq ], Ets)sl∇
R,L
Eab

∧ ∇
R,L
Est

∧ ∇
R,L
Eqp

−

∑
|s|=|t |=1,|p|=|a|=1,|b|=|q|=0

([Eba, E pq ], Ets)sl∇
R,L
Eab

∧ ∇
R,L
Est

∧ ∇
R,L
Eqp

)
. (3.27)

On the other hand, we develop

m+n∑
s,t,p,q,a,b=1

(Êst , [Êqp, Êab])sl∇
R,L
Est

⊗ ∇
R,L
Eqp

⊗ ∇
R,L
Eab

for which we decompose this sum following the parity of the couples (t, s), (p, q) and (a, b), and we remark that the
term (Êst , [Êqp, Êab])sl is often zero.4 Then after some algebraic operations we have

m+n∑
s,t,p,q,a,b=1

(Êst , [Êqp, Êab])sl∇
R,L
Est

⊗ ∇
R,L
Eqp

⊗ ∇
R,L
Eab

=
1
6

m∑
s,t,p,q,a,b=1

(Êts, [Êqp, Êba])sl∇
R,L
Est

∧ ∇
R,L
E pq

∧ ∇
R,L
Eab

+
1
6

m+n∑
s,t,p,q,a,b=m+1

(Êts, [Êqp, Êba])sl∇
R,L
Est

∧ ∇
R,L
E pq

∧ ∇
R,L
Eab

4 For instance when Êst and [Êqp, Êab] have not the same parity.
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+ (2i)3

( ∑
|s|=|t |=0,|p|=|a|=1,|b|=|q|=0

([Eba, E pq ], Ets)sl∇
R,L
Eab

∧ ∇
R,L
Est

∧ ∇
R,L
Eqp

−

∑
|s|=|t |=1,|p|=|a|=1,|b|=|q|=0

([Eba, E pq ], Ets)sl∇
R,L
Eab

∧ ∇
R,L
Est

∧ ∇
R,L
Eqp

)
(3.28)

Thus, from Eqs. (3.24), (3.25), (3.27) and (3.28) we deduce

W Z Wsl(m|n,C) =

m+n∑
s,t,p,q,a,b=1

(Êst , [Êqp, Êab])sl∇
R,L
Est

⊗ ∇
R,L
Eqp

⊗ ∇
R,L
Eab

. (3.29)

In other words, we have proven the equality (3.9).

3.3. Annex 3: Proof of C R
= C L

First, we recall the definition of C R,L

C R,L
=

m+n∑
a=1

∇
R,L
Ta

⊗ ∇
R,L
ta + (−1)|a|

∇
R,L
ta ⊗ ∇

R,L
Ta

.

From the expression of the basis Ta, ta (cf. (3.11) and (3.12)), we deduce

C R,L
= C R,L

u − C R,L
w (3.30)

with

C R,L
u,w = 2i

(∑
α>0

(∇
R,L
Eα

⊗ ∇
R,L
E−α

+ ∇
R,L
E−α

⊗ ∇
R,L
Eα

) +

m−1∑
µ=1

∇
R,L
Hµ

⊗ ∇
R,L
Hµ

)

+

∑
β>0

(∇
L ,R
Ẽβ

⊗ ∇
R,L
Ẽ−β

+ ∇
R,L
Ẽ−β

⊗ ∇
R,L
Ẽβ

) +

n−1∑
ν=1

∇
R,L
H̃ν

⊗ ∇
R,L
H̃ν

+

∑
δ>0

(∇
R,L
Vδ

⊗ ∇
R,L
V−δ

− ∇
R,L
V−δ

⊗ ∇
R,L
Vδ

) + ∇
R,L
H0

⊗ (∇
R,L
H0

). (3.31)

The index u (w) means that C R,L
u (w) acts only on the generators u(w). Moreover, it is not difficult to prove the following

equalities

m−1∑
µ=1

Hµ ⊗ Hµ =

m∑
k=1

Ekk ⊗ Ekk −
1
m

1m ⊗ 1m

n−1∑
ν=1

H̃ν ⊗ H̃ν = −

m+n∑
k=m+1

Ekk ⊗ Ekk +
1
n

1n ⊗ 1n

H0 ⊗ H0 =
1

n − m
1m+n ⊗ 1m+n

where 1n = diag(1n, 0), 1m = diag(0, 1m) and 1m+n = diag(1n, 1m). The previous three equations imply

m−1∑
µ=1

Hµ ⊗ Hµ +

n−1∑
ν=1

H̃ν ⊗ H̃ν + H0 ⊗ H0 =

m∑
k=1

Ekk ⊗ Ekk −

m+n∑
l=m+1

Ekk ⊗ Ekk +
1

n − m
1 ⊗ 1. (3.32)

Thus, from Eqs. (3.31) and (3.32) we deduce

C R,L
u,w = 2i

(
m+n∑
t,s=1

(−1)|s|∇
R,L
Est

⊗ ∇
R,L
Ets

+
1

n − m
∇

R,L
1 ⊗ ∇

R,L
1

)
.
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Then, it is easy to prove respectively the equalities C L
u = C R

u and C L
w = C R

w on the generators u and w. Therefore,
we have C L

u = C R
u and C L

w = C R
w . Finally, Eq. (3.30) and the two previous equations imply

C R
= C L .

Acknowledgement

It is a pleasure to thank my advisor C. Klimcik for suggesting this problem to me, for his invaluable mathematical
help and inspiring ideas.

References

[1] A.Yu. Alekseev, On Poisson actions of compact Lie groups on symplectic manifolds, J. Differential Geom. 45 (2) (1997) 241–256.
[2] N. Andruskiewitsch, Lie superbialgebras and Poisson–Lie supergroups, Abh. Math. Sem. Univ. Hamburg 63 (1993) 147–163.
[3] H. Flaschka, T.A. Ratiu, Convexity theorem for Poisson actions of compact Lie groups, Ann. Sci. École Norm. Sup. (4) 29 (6) (1996) 787–809.
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